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n-coloring

Can we distinguish figure 8 knot from unknot?
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First method

Figure : Connected product of two knots
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Box description of a knot
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Second method

Figure : Connected product in box presentation
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Properties

Lemma

The operation # is associative and commutative, and the unknot U is the
identity element. In other words, for any three knots A,B,C, we have
(A#B)#C = A#(B#C ), A#B = B#A and U#A = A#U = A. So we
can denote the unknot U simply by 1.

Figure : Commutativity of composition
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Knots don’t have inverses

Theorem

If A,B are non-trivial knots, then A#B 6= 1.

Suppose A,B are non-trivial knots, such that A#B = 1

C = A#B#A#B#A#B# . . .

C = (A#B)#(A#B)#(A#B)# · · · = 1#1#1# · · · = 1

C = A#(B#A)#(B#A)# · · · = A#1#1#1 · · · = A

So we’ve got A = 1.
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Knots don’t have inverses
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n-coloring of a connected sum

Theorem

coln(A) · coln(B) = n · coln(A#B).

Figure : Connected sum of two trefoils
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Defining relations

Definition

A Conway polynomial of a link is a function ∇ giving for any diagram D a
polynomial ∇(D) in one variable x defined by the following two relations,
called skein relations:
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Examples

Figure : Conway relations
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